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Block 20 (Abstract)

As thermosetting resins and composites made from them begin to be used in
critical applications, it becomes necessary to monitor and analyze the cure of the
resin within the confines of the processing equipment. Such measurements have
been carried out using a dielectric technique called dielectrometry or dielectric
analysis. Conventional dielectrometry has certain limitations associated with the
use of parallel plate geometry for electrodes. For in situ measurement of cure,
intrusiveness of electrodes is a problem which may require placement of electrodes
in non-strategic areas. Since electrode spacing changes during cure, it is
difficult to deduce permittivity and loss factor from the data. At lower
frequencies the capacitive currents are small and signal-to-noise ratios are small,
therefore, measurement at low frequencies (<100 Hz) typically require large
electrode sizes.

One approach to overcome the problems described above is the development of
microdielectrometry. A solid state integrated circuit chip, 2mm x 4 mm in size,
is used as the sensor. The miniature sensor can measure the properties of a dielectric
on its surface, therefore it need not intrude into the composite part. Transistors
which are buil* into the integrated circuit are used to amplify the signal to make
low frequency (<1 Hz) measurements feasible. The electrode geometry does not change,
therefore loss factor and permittivity data can be deduced in real-time. During
cure of the resin or composite material, permittivity and loss factor are measured
continuously at a series of preselected frequencies. Real-time data is plotted on
a strip chart and is also stored in a cassette for later analysis. Temperature
of the curing material is measured either by a diode on the sensor or by externally
placed thermocoupies.

Resylts on commercially available carbon-epoxy prepregs are presented in this
report.™ JResults show that microdielectrometry can be used to follow the cure of
the prepreg and absolute measurements of permittivity and loss factor can be made
to provide information on the mechanisms that produce the observed changes. Data
at <1 Hz can be obtained. For these systems prior to gelation at typical cure
temperatures, the data is often out of range of the instrument, requiring the use
of a high conductivity option (which we do not have) for monitoring that regime
of cure. Lower than expected permittivity values at the end of cure indicate some
problems with resin separation from the chip surface. Experiments with aged
prepregs are also described.,
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FOREWORD

The following final report describes part of the work performed
under ONR Contract No. N0O0O14-82-C-0164, "Monitor Cure of Composites and
Evaluate Cure Monitoring Procedures®. The report (Final Report No. 3)

covers the work done with Micromet System II and a flat ribbon sensor
which permits working with composites. Previous reports dealt with
using System I instrumentation on resins (Report No. 1) and prepreg
(Report No. 2).

This program was administered for ONR by Dr. L. H. Peebles, Jr.
The program was conducted entirely at the Westinghouse Electric Corp.,
RED Center, in the Polymer and Composite Research Department with
Z. N. Sanjana as Principal Investigator.
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THE USE OF MICRODIELECTROMETRY IN
MONITORING THE CURE OF CARBON-EPOXY PREPREG

Z. N. Sanjana
Westinghouse Electric Corporation
R&D Center
Pittsburgh, PA 15235

1. INTRODUCTION

As thermosetting resins and advanced composites made from them
begin to be used in critical applications it becomes necessary to
monitor the cure of the thermosetting resins within the confines of the
processing equipment. Such measurements of cure have been carried out
by several investigators using a dielectric technique generally called
dielectric analysis.(l-s) In conventional dielectric analysis the
sample to be examined is placed between two parallel conducting plates
or electrodes and the ac capacitance and dissipation factor are measured
using a device called an automatic dielectrometer. One such automatic
dielectrometer, popularly called by its acronym Audrey, has been
frequently used. It provides a continuous output of dissipation factor
and capacitance as a function of time, temperature and frequency (from
0.1 kHz to 100 kHz). It has been successfully used in studying
parameters affecting cure(l—s), in situ monitoring of cure in an
autoclave(4), and features of the dielectric output have been related to
changes in chemistry(s).

There are certain problems associated with conventional
dielectrometry, main’y centered around the use of the parallel plate
geometry for electrodes. For in situ measurement of cure the placement
and intrusiveness of the electrodes becomes an issue. Also, since
parallel plate spacing can change during cure, it is difficult to deduce

from the capacitance and dissipation factor curves the fundamental
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dielectric properties, permittivity and loss factor. The use of
conductive fibers such as graphite and boron require spacial treatment
of the sample space which at low frequencies become very small and
therefore signal-to-noise ratios become small.

Microdielectrometry(6’7) is a technique developed as one
approach to overcome some of the problems described above. Integrated
circuit technology is used to develop a miniaturized probe that combines
a small size with built-in amplification to measure dielectric
properties of polymers at frequencies as low as 0.1 Hs. The integrated
circuit device consists of a planar interdigitated electrode structure
with a pair of matched field effect transistors. The electrode geometry
does not change during cure and is reproducible from device to device.

Figure 1 shows the conceptual difference between parallel plate

dielectrometry and microdielectrometry.
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2. EXPERIMENTAL

Our System I Microdielectrometer was modified to System II
specifications by Micromet Instruments, Inc.(s) It is shown
schematically in Figure 2. The major change was the use of a Fourier
transform analyzer which permits acquisition of very low frequency
noise-free signals. The system, in essence, takes the relative gain and

phase of the sensor output compared to sensor input (imposed sinusoidal

voltage under command from a programmed computer) and using an
| internally stored calibration converts the data into permittivity (¢’),
loss factor (€’’) and their ratio the loss tangent or dissipation factor
(tan 6 = €’’/e’). Thus €’ and €’’ can be measured for any material that
is on the surface of the integrated circuit chip or sensor. The sensor
consists of a 2 mm x 4 mm integrated circuit mounted in a flat cable
package shown in Figure 3. Both electrodes used in the dielectric
measurement are placed on the same surface to form an interdigitated
capacitor and on-chip amplification produces high signal-to-noise
ratios.(7)

Our previous measurements of the cure of epoxy resins were made
by placing a drop of the curing mixture on the sensor surface. Here,
200 gm quantities of resin were placed in a pan, the sensor was immersed
in the resin and cure was carried out in an oven. The flat ribbon cable
connects the sensor to the sensor interface box as shown schematically
in Figure 2. The oven temperature was either ramped or controlled at a
set temperature by means of a controller.

1.1 Materials and Cure Schedule

The resin reported on here is Hercules 3501-8 which was kept
frozen at -20°C until ready for use. The resin is a proprietary
composition whose principal constituents are a tetrafunctional resin and
tetraglycidyl methylene dianiline, cured with diaminodiphenyl sulfone.
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Unidirectional carbon prepreg consisting of AS-4 fiber impregnated at
42% resin content with the 3501-6 resin was obtained from Hercules, Inc.
Laminates were made from a 40 ply, 0-90 symmetric lay-up. Prepreg cure
was studied and compared to that of the resin. The resin was cured in a
programmable oven; the prepreg was cured in a programmable press. An
identical cure cycle was used for both and is typical of the cure used
for this prepreg. It is as follows:

1. At a rate of 4°F raise temperature to 240°F (116°C).
Hold at 240°F for 70 mins.
At a rate of 4°F raise temperature to 350°F (177°C).
Hold at 350°F for 130 mins.
Cool.
Post-cure: 4 hrs @ 350°F.

For the prepreg cure a pressure of 50 psi (345 kPa) was used
throughout the cure cycle.

oo W N

Temperatures were measured using both a calibrated thermocouple
and the temperature measuring on-chip diode. In general the agreement
between the two was fairly good with the diode indicating a temperature
a few degrees (5-10°F) higher than the thermocouple. This is shown in

Figures 4 and 5. The temperature data presented in this report uses the

output of the thermocouple.

1.2 Sensor Location For Prepreg Cure

In order to avoid electrode contact with conducting carbon
fibers, the sensor active surface was always separated from the prepreg
by either a small piece of glass fabric or by porous PTFE coated glass
release sheet. Three sensor locations were tried: (a) sensor was placed
in a channel cut in the bottom tooling plate, (b) a channel was cut in
the middle 4 plies of prepreg and the sensor was located there, and

(c) sensor was placed active face down on top of the porous PTFE coated

2-2




glass release cloth and channels were cut in the bleeder plies to
acconmodate the sensor,. In (a) and (b) a small piece of glass fabric
was used on top of the sensor; in (c) that was not necessary.

In general all three locations provided meaningful results
about the state of cure and post-cure but no location was immune from a
nagging problem - the resin either only partially wetted the surface or
partially separated from the surface at some point in cure after
gelation. The chief evidence of this was that final cured
permittivities were much less than the anticipated 4.0. Sometimes the
cured permittivities were less than 2.0.
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’ 3. RESULTS AND DISCUSSION :E’
, 7
\ "
3.1 Resin e

Figures 6 and 7 present the loss factor and permittivity data ;; :

on a 200 gm casting of the resin. The large exotherm peak in the e

temperature is noted when the oven temperature approaches 350°F. Prior gﬁé

to gelation, which generally occurs 30 mins after reaching final cure PN
temperature of 350°F (for this resin and this particular cure schedule) ;ﬁ ]
L large amounts of the data are lost by virtue of being “off-scale". The tii’
fully cured permittivity is about 4.00 (Figure 7) and the low frequency :Q:f

5 loss factor data shows a continuing reduction in magnitude indicating \}V
continuing reaction after 4 hrs at 350°F. The low frequency (0.1 Hz, NN

1.0 Hz, 10 Hz) loss factor data is dominated by conductivity as E:%?

indicated by the inverse relationship with frequency (i.e., €" a 1/f). if;

Higher frequencies do not show this presumably because of dipolar f(f

effects. o

: o
) 3.2 Prepreg Cure EE:T
. 3.2.1 Sensor Placed in Channel Cut in Bottom Tooling Plate ROX
Figures 8 and 9 present loss factor and permittivity data for =

the cure of prepreg for the sensor located as shown in Figure 3. As in E;S

the resin c-e, the loss factor data prior to gelation are largely Q{?

"off-scale". This indicates a clear need for the ability to measure ;;i

high conductivities in the early stages of cure. Instrumentation for NN

such measurements is now available from Micromet Instruments.(s) After igﬁ

gelation (about 30 mins after 350°F is achieved) the loss factor drops Etk

rapidly but continues to show reductions indicating continuing cure ;‘:

throughout the cure cycle. As in the case of neat resin the data at the v

lower frequencies is conductivity dominated; this also shows up in the EE:

low frequency permittivity data at the end of cure due to formation of a ::E:

N

e
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charged '“Tocking-layer'.(g) The high frequency permittivity data is
well behaved and is around 4 at the end of cure. In Figures 8 and 9 the
formation of a dispersion region and dipolar peaks is noted as the
laminate is cooled down. The post-cure data of Figure 10 shows

continuing reaction and a consequent reduction in conductivity and loss

factor throughout the post-cure.

3.2.2 Sensor Placed on Top of Relesase Sheet

Figures 11-13 show the data with the sensor chip turned face
down on top of the porous PTFE coated glass release sheet. Such a

location is probably optimum because it does not intrude into the

.,';.v ';v(.v '5
Aary "'

R
l’{ .
;

,'(.
u,". -, ". S

laminate nor does it require cutting the tooling. The data are
essentially identical to the measurements shown in Figures 8-10.
Sensors located within the body of the laminate also showed
results identical to those shown in Figures 8-13. Regardless of sensor
location, many of the runs had lower than realistic final permittivity
values (¥4). It is hypothesized that this was due to poor wetting of
the sensor active surface and a subsequent shrinking away of the resin
from some portions of the active surface. Within the scope of this
program it has not been possible to define when or how this happens or

how to prevent it from taking place. It may not be a problem with other

resin systems(lo) and may not occur in an autoclave cycle in which
vacuum is pulled on the prepreg reducing voids due to volatiles, or with
high pressure cures when cloth is used.

3.2.3 Prepreg Aging
It is reasonable to expect that as the prepreg is aged
(advanced) it will begin to flow onto the sensor surface at higher

temperatures and the loss factor values, which are inversely

proportional to viscosity, will be lower at any given temperature. That

R
A P
hf a,': Wt




this does occur is clearly shown in Figures 14-18 where during the
initial heatup the loss factor is plotted as a function of temperature
for prepreg which has been progressively advanced by heat and humidity.

The three day data was rerun to show duplication.
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4. CONCLUSIONS

Microdielectrometry can be successfully used to follow the cure
of resins and carbon-epoxy prepregs indicating, viscosity changes, the
region of gelation and the effectiveness of additional cure or
post-cure. Pregelation conductivity of typical useful epoxy resins is
such that it requires the use of a high conductivity sensor if
pregelation data over large frequency ranges is to be obtained.

Aging of prepreg can be monitored by measuring the loss factor
data as a function of temperature during the initial heatup of the
prepreg. As the prepreg is aged or advanced, the loss factor

measurements at a fixed temperature are lower.
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